Asymptotic Behavior of Weighted Quadratic Variations of Fractional Brownian Motion: the Critical Case H = 1/4 by Ivan Nourdin

نویسنده

  • ANTHONY RÉVEILLAC
چکیده

We derive the asymptotic behavior of weighted quadratic variations of fractional Brownian motion B with Hurst index H = 1/4. This completes the only missing case in a very recent work by I. Nourdin, D. Nualart and C. A. Tudor. Moreover, as an application, we solve a recent conjecture of K. Burdzy and J. Swanson on the asymptotic behavior of the Riemann sums with alternating signs associated to B.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behavior of Weighted Quadratic and Cubic Variations of Fractional Brownian Motion by Ivan Nourdin

The present article is devoted to a fine study of the convergence of renormalized weighted quadratic and cubic variations of a fractional Brownian motion B with Hurst index H . In the quadratic (resp. cubic) case, when H < 1/4 (resp. H < 1/6), we show by means of Malliavin calculus that the convergence holds in L2 toward an explicit limit which only depends on B. This result is somewhat surpris...

متن کامل

Asymptotic Behavior of Weighted Quadratic and Cubic Variations of Fractional Brownian Motion

The present article is devoted to a fine study of the convergence of renormalized weighted quadratic and cubic variations of a fractional Brownian motion B with Hurst index H . In the quadratic (resp. cubic) case, when H < 1/4 (resp. H < 1/6), we show by means of Malliavin calculus that the convergence holds in L toward an explicit limit which only depends on B. This result is somewhat surprisi...

متن کامل

Asymptotic behavior of weighted quadratic variations of fractional Brownian motion: the critical case H=1/4

We derive the asymptotic behavior of weighted quadratic variations of fractional Brownian motion B with Hurst index H = 1/4. This completes the only missing case in a very recent work by I. Nourdin, D. Nualart and C.A. Tudor. Moreover, as an application, we solve a recent conjecture of K. Burdzy and J. Swanson on the asymptotic behavior of the Riemann sums with alternating signs associated to B.

متن کامل

Weighted power variations of iterated Brownian motion

We characterize the asymptotic behaviour of the weighted power variation processes associated with iterated Brownian motion. We prove weak convergence results in the sense of finite dimensional distributions, and show that the laws of the limiting objects can always be expressed in terms of three independent Brownian motions X, Y and B, as well as of the local times of Y . In particular, our re...

متن کامل

Convergence of weighted power variations of fractional Brownian motion

The first part of the paper contains the study of the convergence for some weighted power variations of a fractional Brownian motion B with Hurst index H ∈ (0, 1). The behaviour is different when H < 1/2 and powers are odd, compared with the case when H = 1/2 or when H > 1/2 and powers are even. In the second part, one applies the results of the first part to compute the exact rate of convergen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009